Textbook Page 616 #1, 2 ANSWERS

1. (a)
$$Zn(s) + H^{+}(aq) \rightarrow Zn^{2+}(aq) + H_{2}(g)$$

$Zn \rightarrow Zn^{2+}$	write the half-reaction
$Zn \rightarrow Zn^{2+}$	balance all elements except O and H (Zn is balanced)
$Zn \rightarrow Zn^{2+}$	add water molecules to balance the oxygen (no oxygen)
$Zn \rightarrow Zn^{2+}$	add hydrogen ions to balance hydrogen (no hydrogen)
$Zn \rightarrow Zn^{2+} + 2e^{-}$	add electrons to balance the charge (this is the oxidation half- reaction because the electrons end up on the product side)
$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$	balanced oxidation half-reaction
$H^+ \rightarrow H_2$	write the half-reaction
$H^+ \rightarrow H_2$	balance all elements except O and H (no other elements)
$H^+ \rightarrow H_2$	add water molecules to balance the oxygen (no oxygen)
$2 H^{+} \rightarrow H_{2}$	add hydrogen ions to balance hydrogen
$2 e^- + 2 H^+ \rightarrow H_2$	add electrons to balance the charge (this is the reduction half-reaction because the electrons end up on the reactant side)

Add the half-reaction equations (the electron transfer is balanced; 2 e⁻ in each half-reaction).

 $2 e^- + 2 H^+(aq) \rightarrow H_2(g)$

$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$
 $2e^{-} + 2H^{+}(aq) \rightarrow H_{2}(g)$

$$Zn(s) + 2H^{+}(aq) \rightarrow Zn^{2+} + H_{2}(g) \qquad \text{overall balanced equation}$$

balanced reduction half-reaction

1. (b)
$$HNO_3(aq) + Cu(s) \rightarrow NO_2(g) + Cu^{2+}(aq)$$

$$HNO_3 \rightarrow NO_2$$
 write the half-reaction

 $HNO_3 \rightarrow NO_2$ balance all elements except O and H (N is balanced)

 $HNO_3 \rightarrow NO_2 + H_2O$ add water molecules to balance the oxygen

 $H^+ + HNO_3 \rightarrow NO_2 + H_2O$ add hydrogen ions to balance hydrogen

 $e^- + H^+ + HNO_3 \rightarrow NO_2 + H_2O$ add electrons to balance the charge (this is the reduction half-reaction because the electrons end up on the reactant side)

 $e^- + H^+(aq) + HNO_3(aq) \rightarrow NO_2(q) + H_2O(l)$ balanced reduction half-reaction

$$Cu \rightarrow Cu^{2+}$$
 write the half-reaction

 $Cu \rightarrow Cu^{2+}$ balance all elements except O and H (Cu is balanced)

 $Cu \rightarrow Cu^{2+}$ add water molecules to balance the oxygen (no oxygen)

 $Cu \rightarrow Cu^{2+}$ add hydrogen ions to balance hydrogen (no hydrogen)

 $Cu \rightarrow Cu^{2+} + 2e^-$ add electrons to balance the charge (this is the oxidation half-reaction because the electrons end up on the product side)

 $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^-$ balanced oxidation half-reaction

Add the half-reaction equations after balancing the electron transfer.

reduction half-reaction
$$\times$$
 2 = $2e^- + 2 H^+(aq) + 2 HNO_3(aq) \rightarrow 2 NO_2(g) + 2 H_2O(l)$
oxidation half-reaction \times 1 = $Cu(s) \rightarrow Cu^{2+}(aq) + 2 e^-$
overall balanced equation $2 H^+(aq) + 2 HNO_3(aq) + Cu(s) \rightarrow 2 NO_2(g) + 2 H_2O(l) + Cu^{2+}(aq)$

 $CH_3OH(aq) + MnO_4^{-}(aq) \rightarrow CO_3^{2-}(aq) + MnO_4^{2-}(aq)$ (in basic solution)

$$CH_3OH \rightarrow CO_3^{2-} \qquad \text{write the half-reaction}$$

$$CH_3OH \rightarrow CO_3^{2-} \qquad \text{balance all elements except O and H}$$

$$2H_2O + CH_3OH \rightarrow CO_3^{2-} \qquad \text{add water molecules to balance the oxygen}$$

$$2H_2O + CH_3OH \rightarrow CO_3^{2-} + 8H^+ \qquad \text{add hydrogen ions to balance hydrogen}$$

$$2H_2O + CH_3OH \rightarrow CO_3^{2-} + 8H^+ + 6e^- \qquad \text{add electrons to balance the charge}$$

$$8OH^- + 2H_2O + CH_3OH \rightarrow CO_3^{2-} + 8H^+ + 6e^- + 8OH^- \qquad \text{to both sides, add OH}^- \text{ to equal to number of } H^+$$

$$8OH^- + 2H_2O + CH_3OH \rightarrow CO_3^{2-} + 8H_2O + 6e^- \qquad \text{combine OH}^- \text{ and } H^+ \text{ to make } H_2O$$

$$8OH^- + CH_3OH \rightarrow CO_3^{2-} + 6H_2O + 6e^- \qquad \text{reduce water (remove } 2H_2O \text{ from both sides)}$$

$$8OH^- (aq) + CH_3OH(aq) \rightarrow CO_3^{2-} (aq) + 6H_2O(I) + 6e^- \qquad \text{balanced oxidation half-reaction}$$

 $MnO_{4}^{-} \rightarrow MnO_{4}^{2-}$ write the half-reaction $MnO_4^- \rightarrow MnO_4^{2-}$ balance all elements except O and H (Mn is balanced) $MnO_4^- \rightarrow MnO_4^{2-}$ add water molecules to balance the oxygen (oxygen is balanced) $MnO_4^- \rightarrow MnO_4^{2-}$ add hydrogen ions to balance hydrogen (no hydrogen) $e^- + MnO_4^- \rightarrow MnO_4^{2-}$ add electrons to balance the charge $e^- + MnO_4^- \rightarrow MnO_4^{2-}$ there are no H⁺ so no OH⁻ are added $e^- + MnO_4^-(aq) \rightarrow MnO_4^{2-}(aq)$ balanced reduction half-reaction

balanced oxidation half-reaction

Add the half-reaction equations after balancing the electron transfer.

oxidation half-reaction
$$\times$$
 1 = $8 \text{ OH}^-(\text{aq}) + \text{CH}_3\text{OH}(\text{aq}) \rightarrow \text{CO}_3^{\ 2^-}(\text{aq}) + 6 \text{ H}_2\text{O(I)} + 6 \text{ e}^-$
reduction half-reaction \times 2 = $6 \text{ MnO}_4^{\ 2^-}(\text{aq}) \rightarrow 6 \text{ MnO}_4^{\ 2^-}(\text{aq})$

overall balanced equation $8 \text{ OH}^{-}(aq) + \text{CH}_{3}\text{OH}(aq) + 6 \text{MnO}_{4}^{-}(aq) \rightarrow \text{CO}_{3}^{2-}(aq) + 6 \text{H}_{2}\text{O}(l) + 6 \text{MnO}_{4}^{2-}(aq)$